193 research outputs found

    Sentinel-1 detects firn aquifers in the Greenland ice sheet

    Get PDF
    Firn aquifers in Greenland store liquid water within the upper ice sheet and impact the hydrological system. Their location and area have been estimated with airborne radar sounder surveys (Operation IceBridge, OIB). However, the OIB coverage is limited to narrow flight lines, offering an incomplete view. Here, we show the ability of satellite radar measurements from Sentinel-1 to map firn aquifers across all of Greenland at 1 km(2) resolution. The detection of aquifers relies on a delay in the freezing of meltwater within the firn above the water table, causing a distinctive pattern in the radar backscatter. The Sentinel-1 aquifer locations are in very good agreement with those detected along the OIB flight lines (Cohen's kappa = 0.84). The total aquifer area is estimated at 54,800 km(2). With continuity of Sentinel-1 ensured until 2030, our study lays a foundation for monitoring the future response of firn aquifers to climate change

    Technical, economic and environmental evaluation of advanced tertiary treatments for micropollutants removal (oxidation and adsorption)

    No full text
    International audienceTwo pilots for tertiary treatment, an advanced oxidation processes (AOP - O3/UV/H2O2) pilot and a granular activated carbon pilot, were tested in three different wastewater treatment plants after a secondary treatment. A total of 64 micropollutants including drugs, pesticides, alkylphenols, PAHs and metals were analysed in the samples at the inlet and the outlet of the pilots. The tertiary treatments studied (ozone, AOP and activated carbon) were efficient for the removal of most of the compounds analysed in this study, except metals. The addition of hydrogen peroxide to ozone increased the number of substances well removed but it did not improve the removal of substances that readily react with ozone (such as betablockers or carbamazepine). The other AOP (ozone/H2O2 and UV/H2O2) did not improve the number of substances well removed in comparison with ozone alone. The granular activated carbon was still efficient (R>70%) after 6 months working 24/7 for most of the drugs and the urea and triazine pesticides. The 5 technologies studied were sized at full scale in order to calculate their cost for two sizes of WWTP. The implementation of a tertiary treatment on a 60 000 to 200 000 PE WWTP would increase the wastewater treatment cost by 1,5 to 17,6 euros cents per cubic meter treated according to the technology and the removal objective. Concerning the environmental impact, for the big WWTP, the activated carbon is more impacting than the other processes for most of the impacts calculated. The order of POA by increasing environmental impact is ozone < ozone/H2O2 < ozone/UV ~ UV/H2O2. For the medium size WWTP however, the activated carbon is comparable to the other solutions regarding environmental impact

    An in situ intercomparison exercise on passive samplers for the monitoring of metals, polycyclic aromatic hydrocarbons and pesticides in surface water

    Get PDF
    An intercomparison exercise on passive samplers (PSs) was organized in summer 2010 for the measurement of selected metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides in surface waters. Various PSs were used and compared at 2 rivers sites and one marine lagoon. A total of 24 laboratories participated. We present selected significant outputs from this exercise, including discussion on quality assurance and quality control for PSs, the interlaboratory variability of field blanks, time weighted average water concentrations and its uncertainties, the representativity of DGT samples, the ability of PSs to lower limits of detection, PAH fingerprints in various PSs compared with spot samples, and the relevance of the permeability reference compounds (PRC) approach for POCIS with pesticides. These in situ intercomparison exercises should enable to progress on the harmonization of practices for the use of passive sampling, especially for priority chemical monitoring and regulatory programs in compliance with the Water Framework Directive (WFD) and Marine Strategy Framework Directive (MSFD)

    Loving work: drawing attention to pleasure and pain in the body of the cultural worker

    Get PDF
    In this article, we present our current research into the body and mind at work, with a particular focus on experiences and implications of enjoyment and love of work within the culture sector. This research is developed through the project Manual Labours that explores the historical conditioning between the body and mind in the so-called immaterial labour conditions. The project aims to identify positive and negative affective labour and the role that physical relationships to work can have in helping conceptualise current working conditions. The enjoyment of work leads to complex differentiations between work and life. This article explores the implications of exploitative labour conditions as self-employed or salaried passionate workers are internalising and developing a sense of ‘un-alienated’ ownership over their wage labour

    The fate and behavior of selected endocrine disrupting chemicals in full scale wastewater and sludge treatment unit processes

    Get PDF
    Endocrine disrupting chemicals are discharged into the environment mainly through wastewater treatment processes. There is a need for better understanding of the fate of these compounds in the unit processes of treatment plant to optimize their removal. The fate of oestrone, 17β-estradiol, 17α-ethinyestradiol and nonylphenol in the unit processes of full scale wastewater treatment plants in the UK, including activated sludge plant, oxidation ditch, biofilter and rotating biological contractor were investigated. The overall removal efficiencies of all the compounds ranged from 41 % to 100 %. The removals were predominantly during the secondary biological treatment with the rates of removal related to the nitrification rates and the sludge age. The removal efficiency of the treatment processes were in the order activated sludge > oxidation ditch > biofilter > rotating biological contractors. Activated sludge plant configured for biological nutrient removal showed better removal of the endocrine disrupting chemicals compared to conventional activated sludge plant effluents. Tertiary treatment was also significant in the removal process through solids removal. Overall mechanisms of removal were biodegradation and sorption unto sludge biomass. Phytoremediation was also significant in the removal processes. The endocrine disrupting chemicals persisted in the anaerobic sludge digestion process with percentage removals ranging fro 10-48 %. Sorption of the endocrine disrupting chemicals onto the sludge increased with increasing values for the partitioning coefficients and the organic carbon contents of the sludge

    Recent Advances in Our Understanding of the Role of Meltwater in the Greenland Ice Sheet System

    Get PDF
    Nienow, Sole and Cowton’s Greenland research has been supported by a number of UK NERC research grants (NER/O/S/2003/00620; NE/F021399/1; NE/H024964/1; NE/K015249/1; NE/K014609/1) and Slater has been supported by a NERC PhD studentshipPurpose of the review:  This review discusses the role that meltwater plays within the Greenland ice sheet system. The ice sheet’s hydrology is important because it affects mass balance through its impact on meltwater runoff processes and ice dynamics. The review considers recent advances in our understanding of the storage and routing of water through the supraglacial, englacial, and subglacial components of the system and their implications for the ice sheet Recent findings:   There have been dramatic increases in surface meltwater generation and runoff since the early 1990s, both due to increased air temperatures and decreasing surface albedo. Processes in the subglacial drainage system have similarities to valley glaciers and in a warming climate, the efficiency of meltwater routing to the ice sheet margin is likely to increase. The behaviour of the subglacial drainage system appears to limit the impact of increased surface melt on annual rates of ice motion, in sections of the ice sheet that terminate on land, while the large volumes of meltwater routed subglacially deliver significant volumes of sediment and nutrients to downstream ecosystems. Summary:  Considerable advances have been made recently in our understanding of Greenland ice sheet hydrology and its wider influences. Nevertheless, critical gaps persist both in our understanding of hydrology-dynamics coupling, notably at tidewater glaciers, and in runoff processes which ensure that projecting Greenland’s future mass balance remains challenging.Publisher PDFPeer reviewe
    corecore